
django-sage-painless
Release version 0.0.1

SageTeam

Jul 23, 2021

CONTENTS

1 Functionality 3

2 Documentation 5
2.1 Quick Start . 5

2.1.1 Getting Started . 5
2.1.2 Start Project . 5
2.1.3 Install Generator . 6

2.2 Usage . 6
2.3 Diagram . 9

2.3.1 Template . 9
2.3.2 Examples . 12

2.4 Contribute . 16
2.4.1 Project Detail . 16
2.4.2 Git Rules . 16
2.4.3 Development . 16

2.5 FAQ . 17
2.5.1 What is code generator? . 17
2.5.2 What is django-sage-painless? . 17
2.5.3 Why should we use this package? . 17
2.5.4 What are the main features of the package? . 17
2.5.5 Why don’t we produce the whole Django project? . 18
2.5.6 How to learn to create a diagram? . 18
2.5.7 How does the cache algorithm work? . 18

3 Issues 19

4 Indices and tables 21

i

ii

django-sage-painless, Release version 0.0.1

This app supports the following combinations of Django and Python:

Django Python
3.1 3.7, 3.8, 3.9
3.2 3.7, 3.8, 3.9

CONTENTS 1

https://sageteam.org/
https://pypi.org/project/django-sage-painless/
https://pypi.org/project/django-sage-painless/
https://pypi.org/project/django-sage-painless/
https://django-sage-painless.readthedocs.io/
https://django-sage-painless.readthedocs.io/

django-sage-painless, Release version 0.0.1

2 CONTENTS

CHAPTER

ONE

FUNCTIONALITY

painless creates django backend projects without developer coding

it can generate these parts:

• models.py

• admin.py

• serializers.py

• views.py

• urls.py

• tests

• api documentation

• Dockerfile

• docker-compose.yml

it also can config pro stuff in django:

• Redis cache

• RabbitMQ

3

django-sage-painless, Release version 0.0.1

4 Chapter 1. Functionality

CHAPTER

TWO

DOCUMENTATION

2.1 Quick Start

2.1.1 Getting Started

Before creating django project you must first create virtualenv.

$ python3.9 -m pip install virtualenv
$ python3.9 -m virtualenv venv

To activate virtual environment in ubuntu:

$ source venv/bin/activate

To deactivate virtual environment use:

$ deactivate

2.1.2 Start Project

First create a Django project

$ mkdir GeneratorTutorials
$ cd GeneratorTutorials
$ django-admin startproject kernel .

Next we have to create a sample app that we want to generate code for it (it is required for development. you will run
tests on this app)

$ python manage.py startapp products

Now we have to add ‘products’ to INSTALLED_APPS in settings.py

INSTALLED_APPS = [
...
'products',
...

]

5

django-sage-painless, Release version 0.0.1

2.1.3 Install Generator

First install package

$ pip install django-sage-painless

Then add ‘sage_painless’ to INSTALLED_APPS in settings.py

These apps should be in your INSTALLED_APPS:

• ‘rest_framework’

• ‘drf_yasg’

• ‘django_seed’

INSTALLED_APPS = [
...
'sage_painless',
...
'rest_framework',
'drf_yasg',
'django_seed',
...

]

2.2 Usage

For generating a whole project you just need a diagram. diagram is a json file that contains information about database
tables.

you can find examples of diagram file here

start to generate (it is required for development. you will run tests on this app)

[NEW]: First validate the format of your diagram, It will raise errors if diagram format was incorrect.

$ python manage.py validate_diagram --diagram <path to diagram>

Now you can generate code

$ python manage.py generate --diagram <path to diagram>

Here system will ask you what you want to generate for your app. Questions:

6 Chapter 2. Documentation

https://github.com/sageteam-org/django-sage-painless/tree/develop/sage_painless/docs/diagrams

django-sage-painless, Release version 0.0.1

Question Description
Would you like to generate models.py(yes/no)? generates models.py from json diagram for your app
Would you like to generate admin.py(yes/no)? generates admin.py from admin settings in json diagram for

your project
Would you like to generate serializers.py &
views.py(yes/no)?

generates serializers.py and views.py in api directory for your
project

Would you like to generate test for your
project(yes/no)?

generates model test and api test for your project in tests di-
rectory

Would you like to add cache queryset sup-
port(yes/no)?

it will cache queryset via redis in your views.py

Would you like to dockerize your project(yes/no)? creates Dockerfile and docker-compose.yml for your project
Would you like to generate docs(yes/no)? generates README.md and saves in docs/sage_painless/git/

If you chose to dockerize project:

Question Description
Please enter the version of your project(e.g 2.1): the version of your project in number
Please enter your project’s database image(e.g postgres): it can be one of docker images recommended post-

gres
Please enter database name: your database name that set in django settings
Please enter database user username: the database will create by this user
Please enter database user password: password of user
Would you like to config redis server for your
project(yes/no)?

if you want cache support yes else no

Would you like to config rabbitMQ for your project(yes/no)? configs RabbitMQ in your docker environment

If you chose to config RabbitMQ:

Question Description
Please enter rabbitMQ user username: RabbitMQ user username
Please enter rabbitMQ user password: RabbitMQ user password

If you generated api you have to add app urls to urls.py:

urlpatterns = [
...
path('api/', include('products.api.urls')),
...

]

If you set cache support add CACHES to your settings:

REDIS_URL = 'redis://localhost:6379/'
CACHES = {

"default": {
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": os.environ['REDIS_URL'] if os.environ.get('REDIS_URL') else settings.

→˓REDIS_URL if hasattr(settings, 'REDIS_URL') else 'redis://localhost:6379/'
}

}

If you have encrypted field in diagram:

2.2. Usage 7

django-sage-painless, Release version 0.0.1

• your database should be PostgreSQL

• you should install pgcrypto extension for PostgreSQL with this command

$ sudo -u postgres psql <db_name>
$ CREATE EXTENSION pgcrypto;

• You have to migrate your new models

$ python manage.py makemigrations
$ python manage.py migrate

• You can run tests for your app

$ python manage.py test products

• Django run server

$ python manage.py runserver

• For support Rest API doc add this part to your urls.py

from rest_framework.permissions import AllowAny
from drf_yasg.views import get_schema_view
from drf_yasg import openapi

schema_view = get_schema_view(
openapi.Info(

title="Rest API Doc",
default_version='v1',
description="Auto Generated API Docs",
license=openapi.License(name="S.A.G.E License"),

),
public=True,
permission_classes=(AllowAny,),

)

urlpatterns = [
...
path('api/doc/', schema_view.with_ui('redoc', cache_timeout=0), name='schema-swagger-

→˓ui'),
...

]

• Rest API documentation is available at localhost:8000/api/doc/

8 Chapter 2. Documentation

django-sage-painless, Release version 0.0.1

2.3 Diagram

2.3.1 Template

Diagram is a json file that contains database tables, settings for admin panel and API configs It is the only thing you
need to generate a whole project

[NEW]: You can also use encryption capability in diagram. Example:

"title": {
"type": "character",
"max_length": 255,
"unique": true,
"encrypt": true

}

the template of the diagram is something like this:

{
"apps": {
"ecommerce": {
"models": {
"Category": {
"fields": {

"title": {
"type": "character",
"max_length": 255,
"unique": true

},
"created": {
"type": "datetime",
"auto_now_add": true

},
"modified": {
"type": "datetime",
"auto_now": true

}
},
"admin": {
"list_display": ["title", "created", "modified"],
"list_filter": ["created", "modified"],
"search_fields": ["title"]

},
"api": {
"methods": ["GET", "POST", "PUT", "PATCH", "DELETE"]

}
},
"Product": {
"fields": {
"title": {
"type": "character",
"max_length": 255

},
(continues on next page)

2.3. Diagram 9

django-sage-painless, Release version 0.0.1

(continued from previous page)

"description": {
"type": "character",
"max_length": 255

},
"price": {
"type": "integer"

},
"category": {
"type": "fk",
"to": "Category",
"related_name": "'products'",
"on_delete": "CASCADE"

},
"created": {
"type": "datetime",
"auto_now_add": true

},
"modified": {
"type": "datetime",
"auto_now": true

}
},
"admin": {
"list_display": ["title", "price", "category"],
"list_filter": ["created", "modified"],
"search_fields": ["title", "description"],
"raw_id_fields": ["category"]

}
},

"Discount": {
"fields": {
"product": {
"type": "fk",
"to": "Product",
"related_name": "'discounts'",
"on_delete": "CASCADE"

},
"discount": {
"type": "integer"

},
"created": {
"type": "datetime",
"auto_now_add": true

},
"modified": {
"type": "datetime",
"auto_now": true

}
},
"admin": {
"list_display": ["discount", "product", "created", "modified"],
"list_filter": ["created", "modified"],

(continues on next page)

10 Chapter 2. Documentation

django-sage-painless, Release version 0.0.1

(continued from previous page)

"raw_id_fields": ["product"]
}

}
}

}
}

}

field types are:

Type Django
character CharField
integer IntegerField
float FloatField
datetime DateTimeField
date DateField
text TextField
fk ForeignKey
one2one OneToOneField
m2m ManyToManyField
image ImageField
file FileField
bool BooleanField
slug SlugField

in admin you can set:

Option Input
list_display list of strings
list_filter list of strings
search_fields list of strings
filter_horizontal list of strings
filter_vertical list of strings
raw_id_fields list of strings
has_add_permission boolean
has_change_permission boolean
has_delete_permission boolean

in api you can set:

Option Input
methods list of strings

2.3. Diagram 11

django-sage-painless, Release version 0.0.1

2.3.2 Examples

example 1:

2 apps (ecommerce & discount)

{
"apps": {
"ecommerce": {
"models": {
"Category": {
"fields": {
"title": {
"type": "character",
"max_length": 255,
"unique": true

},
"created": {
"type": "datetime",
"auto_now_add": true

},
"modified": {
"type": "datetime",
"auto_now": true

}
},
"admin": {
"list_display": [
"title",
"created",
"modified"

],
"list_filter": [
"created",
"modified"

],
"search_fields": [
"title"

]
},
"api": {
"methods": [
"GET",
"POST",
"PUT",
"PATCH",
"DELETE"

]
}

},
"Product": {
"fields": {
"title": {
"type": "character",

(continues on next page)

12 Chapter 2. Documentation

django-sage-painless, Release version 0.0.1

(continued from previous page)

"max_length": 255
},
"description": {
"type": "character",
"max_length": 255

},
"price": {
"type": "integer"

},
"category": {
"type": "fk",
"to": "Category",
"related_name": "'products'",
"on_delete": "CASCADE"

},
"created": {
"type": "datetime",
"auto_now_add": true

},
"modified": {
"type": "datetime",
"auto_now": true

}
},
"admin": {
"list_display": [
"title",
"price",
"category"

],
"list_filter": [
"created",
"modified"

],
"search_fields": [
"title",
"description"

],
"raw_id_fields": [
"category"

]
}

}
}

},
"discount": {
"models": {
"Discount": {
"fields": {
"product": {
"type": "fk",
"to": "Product",

(continues on next page)

2.3. Diagram 13

django-sage-painless, Release version 0.0.1

(continued from previous page)

"related_name": "'discounts'",
"on_delete": "CASCADE"

},
"discount": {
"type": "integer"

},
"created": {
"type": "datetime",
"auto_now_add": true

},
"modified": {
"type": "datetime",
"auto_now": true

}
},
"admin": {
"list_display": [
"discount",
"product",
"created",
"modified"

],
"list_filter": [
"created",
"modified"

],
"raw_id_fields": [
"product"

]
}

}
}

}
}

}

example 2:

1 app (articles)

{
"apps": {
"articles": {
"models": {
"Article": {
"fields": {
"title": {
"type": "character",
"max_length": 120

},
"body": {
"type": "character",
"max_length": 255

(continues on next page)

14 Chapter 2. Documentation

django-sage-painless, Release version 0.0.1

(continued from previous page)

},
"slug": {
"type": "slug",
"max_length": 255,
"unique": true

},
"created": {
"type": "datetime",
"auto_now_add": true

},
"publish": {
"type": "datetime",
"null": true,
"blank": true

},
"updated": {
"type": "datetime",
"auto_now": true

},
"options": {
"type": "character",
"max_length": 2,
"choices": [
[
"dr",
"Draft"

],
[
"pb",
"public"

],
[
"sn",
"soon"

]
]

}
},
"admin": {
"list_display": [
"title",
"created",
"updated"

],
"list_filter": [
"created",
"updated",
"options"

],
"search_fields": [
"title",
"body"

(continues on next page)

2.3. Diagram 15

django-sage-painless, Release version 0.0.1

(continued from previous page)

]
},
"api": {
"methods": [
"get",
"post"

]
}

}
}

}
}

}

2.4 Contribute

2.4.1 Project Detail

You can find all technologies we used in our project into these files:

• Version: 1.0.0

• Frameworks: Django 3.2.4

• Libraries:

– Django rest framework 3.12.4

– Jinja2 3.0.1

• Language: Python 3.9.4

2.4.2 Git Rules

Sage team Git Rules Policy is available here:

• Sage Git Policy

2.4.3 Development

Run project tests before starting to develop - products app is required for running tests

$ python manage.py startapp products

INSTALLED_APPS = [
...
'products',
...

]

• you have to generate everything for this app

16 Chapter 2. Documentation

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

django-sage-painless, Release version 0.0.1

• diagram file is available here: Diagram

$ python manage.py generate --app products --diagram sage_painless/tests/diagrams/
→˓product_diagram.json

• run tests

$ python manage.py test sage_painless

2.5 FAQ

2.5.1 What is code generator?

A code generator is a tool or resource that generates a particular sort of code or computer programming language. This
has many specific meanings in the world of IT, many of them related to the sometimes complex processes of converting
human programming syntax to the machine language that can be read by a computing system.One of the most common
and conventional uses of the term “code generator” involves other resources or tools that help to turn out specific kinds
of code. For example, some homemade or open source code generators can generate classes and methods for easier or
more convenient computer programming. This type of resource might also be called a component generator.

2.5.2 What is django-sage-painless?

The django-sage-painless is a valuable package based on Django Web Framework & Django Rest Framework for high-
level and rapid web development. The introduced package generates Django applications. After completing many
projects, we concluded that any basic project and essential part is its database structure. You can give the database
schema in this package and get some parts of the Django application, such as API, models, admin, signals, model
cache, setting configuration, mixins, etc. All of these capabilities come with a unit test. So you no longer have to worry
about the simple parts of Django, and now you can write your advanced services in Django. Django-sage-painless
dramatically speeds up the initial development of the project in Django. However, we intend to make it possible to use
it in projects that are in progress. But the reality now is that we have made Django a quick start. We used the name
painless instead of the Django code generator because this package allows you to reach your goals with less effort.

2.5.3 Why should we use this package?

One of the most important reasons to use this package is to speed up the development of Django applications. Then,
another important reason is that you can use many features with this package if you want. Therefore, you DO NOT
have to use all the features of the generator.

2.5.4 What are the main features of the package?

• Generate models based on your defined diagram

• Support database relationships: [one-to-one] [one-to-many] [many-to-many]

• Generate cache mixin to your models (OPTIONAL)

• Generate model test

• Generate signals (if you use one-to-one relationship)

• Generate rest framework API endpoints (OPTIONAL)

2.5. FAQ 17

https://github.com/sageteam-org/django-sage-painless/blob/develop/sage_painless/docs/diagrams/product_diagram.json

django-sage-painless, Release version 0.0.1

• Generate rest framework documentation (OPTIONAL)

• Generate API URLs (if request for API)

• Generate API test

• Generate admin via filter and search capability (OPTIONAL)

• Generate setting configuration of (Redis, RabbitMQ, Celery, etc. OPTIONAL)

• Generate docker compose file, Dockerfile and related documentation (OPTIONAL)

2.5.5 Why don’t we produce the whole Django project?

Based on this question, we took a new attitude was taken in the package. One of the important issues in package design
is that it is scalable and compatible with projects that are under development. That’s why we decided to automate only
the apps according to the project design model instead of producing a complete Django project. Therefore, anyone can
use this package in the middle of their startup development and release their new features faster than before.

2.5.6 How to learn to create a diagram?

In the example section, we have taught all the sections related to Digram.

2.5.7 How does the cache algorithm work?

Caching algorithm works in such a way that once your data is loaded, it is cached in Redis, and there is no need to
query the database again. We have also designed the algorithm like that if your data in the database changes, cached
data will be deleted automatically from Redis.

18 Chapter 2. Documentation

CHAPTER

THREE

ISSUES

If you have questions or have trouble using the app please file a bug report at:

https://github.com/sageteam-org/django-sage-painless/issues

19

https://github.com/sageteam-org/django-sage-painless/issues

django-sage-painless, Release version 0.0.1

20 Chapter 3. Issues

CHAPTER

FOUR

INDICES AND TABLES

• search

21

	Functionality
	Documentation
	Quick Start
	Getting Started
	Start Project
	Install Generator

	Usage
	Diagram
	Template
	Examples

	Contribute
	Project Detail
	Git Rules
	Development

	FAQ
	What is code generator?
	What is django-sage-painless?
	Why should we use this package?
	What are the main features of the package?
	Why don’t we produce the whole Django project?
	How to learn to create a diagram?
	How does the cache algorithm work?

	Issues
	Indices and tables

