

Welcome to django-sage-painless’s documentation!

[image: SageTeam]
 [https://sageteam.org/]

[image: PyPI release]
 [https://pypi.org/project/django-sage-painless/][image: Supported Python versions]
 [https://pypi.org/project/django-sage-painless/][image: Supported Django versions]
 [https://pypi.org/project/django-sage-painless/][image: Documentation]
 [https://django-sage-painless.readthedocs.io/][image: Build]
 [https://django-sage-painless.readthedocs.io/]

This app supports the following combinations of Django and Python:

	Django

	Python

	3.1

	3.7, 3.8, 3.9

	3.2

	3.7, 3.8, 3.9

Functionality

painless creates django backend projects without developer coding

it can generate these parts:

	models.py

	signals.py

	admin.py

	serializers.py

	views.py

	urls.py

	tests

	API documentation

	Dockerfile

	docker-compose.yml

	cache queryset (Redis)

	video streaming

	database encryption (PostgreSQL)

	tox

	coverage

	gunicorn

	uwsgi

	README.md

Documentation

	Quick Start
	Getting Started

	Start Project

	Install Generator

	Usage

	Diagram
	Template

	Examples

	Contribute
	Project Detail

	Git Rules

	Development

	FAQ
	What is code generator?

	What is django-sage-painless?

	Why should we use this package?

	What are the main features of the package?

	Why don’t we produce the whole Django project?

	How to learn to create a diagram?

	How does the cache algorithm work?

Issues

If you have questions or have trouble using the app please file a bug report at:

https://github.com/sageteam-org/django-sage-painless/issues

Indices and tables

	Search Page

Quick Start

Getting Started

Before creating django project you must first create virtualenv.

$ python3.9 -m pip install virtualenv
$ python3.9 -m virtualenv venv

To activate virtual environment in ubuntu:

$ source venv/bin/activate

To deactivate virtual environment use:

$ deactivate

Start Project

First create a Django project

$ mkdir GeneratorTutorials
$ cd GeneratorTutorials
$ django-admin startproject kernel .

Next we have to create a sample app that we want to generate code for it
(it is required for development. you will run tests on this app)

$ python manage.py startapp products

Now we have to add ‘products’ to INSTALLED_APPS in settings.py

INSTALLED_APPS = [
 ...
 'products',
 ...
]

Install Generator

First install package

$ pip install django-sage-painless

Then add ‘sage_painless’ to INSTALLED_APPS in settings.py

These apps should be in your INSTALLED_APPS:

	rest_framework

	drf_yasg

	django_seed

INSTALLED_APPS = [
 ...
 'sage_painless',
 ...
 'rest_framework',
 'drf_yasg',
 'django_seed',
 ...
]

Usage

For generating a whole project you just need a diagram. diagram is a
json file that contains information about database tables.

you can find examples of diagram file
here [https://github.com/sageteam-org/django-sage-painless/tree/develop/sage_painless/docs/diagrams]

start to generate (it is required for development. you will run tests on
this app)

[NEW]: First validate the format of your diagram, It will raise errors if diagram format was incorrect.

$ python manage.py validate_diagram --diagram <path to diagram>

Now you can generate code

$ python manage.py generate --diagram <path to diagram>

You can generate deploy config files

$ python manage.py deploy --diagram <path to deploy diagram>

You can generate docs files

$ python manage.py docs --diagram <path to diagram>

Here system will ask you what you want to generate for your app.
Questions:

	Question

	Description

	Would you like to generate models.py(yes/no)?

	generates models.py from json diagram for your app

	Would you like to generate admin.py(yes/no)?

	generates admin.py from admin settings in json diagram for your project

	Would you like to generate serializers.py & views.py(yes/no)?

	generates serializers.py and views.py in api directory for your project

	Would you like to generate test for your project(yes/no)?

	generates model test and api test for your project in tests directory

	Would you like to add cache queryset support(yes/no)?

	it will cache queryset via redis in your views.py

If you generated api you have to add app urls to urls.py:

urlpatterns = [
 ...
 path('api/', include('products.api.urls')),
 ...
]

If you set cache support add CACHES to your settings:

REDIS_URL = 'redis://localhost:6379/'
CACHES = {
 "default": {
 "BACKEND": "django_redis.cache.RedisCache",
 "LOCATION": os.environ['REDIS_URL'] if os.environ.get('REDIS_URL') else settings.REDIS_URL if hasattr(settings, 'REDIS_URL') else 'redis://localhost:6379/'
 }
}

If you have encrypted field in diagram:

	your database should be PostgreSQL

	you should install pgcrypto extension for PostgreSQL with this command

$ sudo -u postgres psql <db_name>
$ CREATE EXTENSION pgcrypto;

	You have to migrate your new models

$ python manage.py makemigrations
$ python manage.py migrate

	You can run tests for your app

$ python manage.py test products

	Django run server

$ python manage.py runserver

	For support Rest API doc add this part to your urls.py

from rest_framework.permissions import AllowAny
from drf_yasg.views import get_schema_view
from drf_yasg import openapi

schema_view = get_schema_view(
 openapi.Info(
 title="Rest API Doc",
 default_version='v1',
 description="Auto Generated API Docs",
 license=openapi.License(name="S.A.G.E License"),
),
 public=True,
 permission_classes=(AllowAny,),
)

urlpatterns = [
 ...
 path('api/doc/', schema_view.with_ui('redoc', cache_timeout=0), name='schema-swagger-ui'),
 ...
]

	Rest API documentation is available at localhost:8000/api/doc/

Diagram

Template

Diagram is a json file that contains database tables, settings for admin panel and API configs
It is the only thing you need to generate a whole project

There are 2 types of diagram:

	generate diagram (for generating Django apps)

	[NEW] deploy diagram (for generating deploy configs like docker, gunicorn, uwsgi, etc)

[NEW]: You can also use encryption capability in diagram. Example:

"title": {
 "type": "character",
 "max_length": 255,
 "unique": true,
 "encrypt": true
 }

[NEW]: You can also use streaming capability in videos. Example:

"movie": {
 "type": "video",
 "upload_to": "movies",
 "stream": true
 }

It will add a new api to your project with /stream endpoint that gets video path in url like:

localhost:8000/api/stream?path=<video_path>

And it will stream it chunk by chunk.

the template of the diagram is something like this:

 {
 "apps": {
 "ecommerce": {
 "models": {
 "Category": {
 "fields": {
 "title": {
 "type": "character",
 "max_length": 255,
 "unique": true
 },
 "created": {
 "type": "datetime",
 "auto_now_add": true
 },
 "modified": {
 "type": "datetime",
 "auto_now": true
 }
 },
 "admin": {
 "list_display": ["title", "created", "modified"],
 "list_filter": ["created", "modified"],
 "search_fields": ["title"]
 },
 "api": {
 "methods": ["GET", "POST", "PUT", "PATCH", "DELETE"]
 }
 },
 "Product": {
 "fields": {
 "title": {
 "type": "character",
 "max_length": 255
 },
 "description": {
 "type": "character",
 "max_length": 255
 },
 "price": {
 "type": "integer"
 },
 "category": {
 "type": "fk",
 "to": "Category",
 "related_name": "'products'",
 "on_delete": "CASCADE"
 },
 "created": {
 "type": "datetime",
 "auto_now_add": true
 },
 "modified": {
 "type": "datetime",
 "auto_now": true
 }
 },
 "admin": {
 "list_display": ["title", "price", "category"],
 "list_filter": ["created", "modified"],
 "search_fields": ["title", "description"],
 "raw_id_fields": ["category"]
 }
 },
 "Discount": {
 "fields": {
 "product": {
 "type": "fk",
 "to": "Product",
 "related_name": "'discounts'",
 "on_delete": "CASCADE"
 },
 "discount": {
 "type": "integer"
 },
 "created": {
 "type": "datetime",
 "auto_now_add": true
 },
 "modified": {
 "type": "datetime",
 "auto_now": true
 }
 },
 "admin": {
 "list_display": ["discount", "product", "created", "modified"],
 "list_filter": ["created", "modified"],
 "raw_id_fields": ["product"]
 }
 }
 }
 }
}

}

field types are:

	Type

	Django

	character

	CharField

	integer

	IntegerField

	float

	FloatField

	datetime

	DateTimeField

	date

	DateField

	time

	TimeField

	text

	TextField

	fk

	ForeignKey

	one2one

	OneToOneField

	m2m

	ManyToManyField

	image

	ImageField

	file

	FileField

	video

	FileField

	bool

	BooleanField

	slug

	SlugField

in admin you can set:

	Option

	Input

	fields

	list of strings

	fieldsets

	list

	ordering

	list of strings

	readonly_fields

	list of strings

	exclude

	list of strings

	list_display

	list of strings

	list_display_links

	list of strings

	list_filter

	list of strings

	list_editable

	list of strings

	search_fields

	list of strings

	filter_horizontal

	list of strings

	filter_vertical

	list of strings

	raw_id_fields

	list of strings

	has_add_permission

	boolean

	has_change_permission

	boolean

	has_delete_permission

	boolean

in api you can set:

	Option

	Input

	methods

	list of strings (Not case sensitive)

Examples

example 1 (generate diagram):

2 apps (ecommerce & discount)

{
 "apps": {
 "ecommerce": {
 "models": {
 "Category": {
 "fields": {
 "title": {
 "type": "character",
 "max_length": 255,
 "unique": true
 },
 "created": {
 "type": "datetime",
 "auto_now_add": true
 },
 "modified": {
 "type": "datetime",
 "auto_now": true
 }
 },
 "admin": {
 "list_display": [
 "title",
 "created",
 "modified"
],
 "list_filter": [
 "created",
 "modified"
],
 "search_fields": [
 "title"
]
 },
 "api": {
 "methods": [
 "GET",
 "POST",
 "PUT",
 "PATCH",
 "DELETE"
]
 }
 },
 "Product": {
 "fields": {
 "title": {
 "type": "character",
 "max_length": 255
 },
 "description": {
 "type": "character",
 "max_length": 255
 },
 "price": {
 "type": "integer"
 },
 "category": {
 "type": "fk",
 "to": "Category",
 "related_name": "'products'",
 "on_delete": "CASCADE"
 },
 "created": {
 "type": "datetime",
 "auto_now_add": true
 },
 "modified": {
 "type": "datetime",
 "auto_now": true
 }
 },
 "admin": {
 "list_display": [
 "title",
 "price",
 "category"
],
 "list_filter": [
 "created",
 "modified"
],
 "search_fields": [
 "title",
 "description"
],
 "raw_id_fields": [
 "category"
]
 }
 }
 }
 },
 "discount": {
 "models": {
 "Discount": {
 "fields": {
 "product": {
 "type": "fk",
 "to": "Product",
 "related_name": "'discounts'",
 "on_delete": "CASCADE"
 },
 "discount": {
 "type": "integer"
 },
 "created": {
 "type": "datetime",
 "auto_now_add": true
 },
 "modified": {
 "type": "datetime",
 "auto_now": true
 }
 },
 "admin": {
 "list_display": [
 "discount",
 "product",
 "created",
 "modified"
],
 "list_filter": [
 "created",
 "modified"
],
 "raw_id_fields": [
 "product"
]
 }
 }
 }
 }
 }
}

example 2 (generate diagram):

1 app (articles)

{
 "apps": {
 "articles": {
 "models": {
 "Article": {
 "fields": {
 "title": {
 "type": "character",
 "max_length": 120
 },
 "body": {
 "type": "character",
 "max_length": 255
 },
 "slug": {
 "type": "slug",
 "max_length": 255,
 "unique": true
 },
 "created": {
 "type": "datetime",
 "auto_now_add": true
 },
 "publish": {
 "type": "datetime",
 "null": true,
 "blank": true
 },
 "updated": {
 "type": "datetime",
 "auto_now": true
 },
 "options": {
 "type": "character",
 "max_length": 2,
 "choices": [
 [
 "dr",
 "Draft"
],
 [
 "pb",
 "public"
],
 [
 "sn",
 "soon"
]
]
 }
 },
 "admin": {
 "list_display": [
 "title",
 "created",
 "updated"
],
 "list_filter": [
 "created",
 "updated",
 "options"
],
 "search_fields": [
 "title",
 "body"
]
 },
 "api": {
 "methods": [
 "get",
 "post"
]
 }
 }
 }
 }
 }
}

[NEW] example 3 (deploy diagram):

{
 "deploy": {
 "docker": {
 "db_image": "postgres",
 "db_name": "products",
 "db_user": "postgres",
 "db_pass": "postgres1234",
 "redis": true,
 "rabbitmq": false
 },
 "gunicorn": {
 "project_name": "kernel",
 "worker_class": "sync",
 "worker_connections": 5000,
 "workers": 5,
 "accesslog": "/var/log/gunicorn/gunicorn-access.log",
 "errorlog": "/var/log/gunicorn/gunicorn-error.log",
 "reload": true
 },
 "uwsgi": {
 "chdir": "/src/kernel",
 "home": "/src/venv",
 "module": "kernel.wsgi",
 "master": true,
 "pidfile": "/tmp/project-master.pid",
 "vacuum": true,
 "max-requests": 3000,
 "processes": 10,
 "daemonize": "/var/log/uwsgi/uwsgi.log"
 },
 "tox": {
 "version": "1.0.0",
 "description": "test project",
 "author": "SageTeam",
 "req_path": "requirements.txt"
 }
 }
}

Contribute

Project Detail

You can find all technologies we used in our project into these files:

	Version: 1.0.0

	Frameworks: Django 3.2.4

	
	Libraries:
	
	Django rest framework 3.12.4

	Jinja2 3.0.1

	Language: Python 3.9.4

Git Rules

Sage team Git Rules Policy is available here:

	Sage Git
Policy [https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow]

Development

Run project tests before starting to develop - products app is
required for running tests

$ python manage.py startapp products

INSTALLED_APPS = [
 ...
 'products',
 ...
]

	you have to generate everything for this app

	diagram file is available here:
Diagram [https://github.com/sageteam-org/django-sage-painless/blob/develop/sage_painless/docs/diagrams/product_diagram.json]

$ python manage.py generate --app products --diagram sage_painless/tests/diagrams/product_diagram.json

	run tests

$ python manage.py test sage_painless

FAQ

What is code generator?

A code generator is a tool or resource that generates a particular sort of code or computer programming language. This has many specific meanings in the world of IT, many of them related to the sometimes complex processes of converting human programming syntax to the machine language that can be read by a computing system.One of the most common and conventional uses of the term “code generator” involves other resources or tools that help to turn out specific kinds of code. For example, some homemade or open source code generators can generate classes and methods for easier or more convenient computer programming. This type of resource might also be called a component generator.

What is django-sage-painless?

The django-sage-painless is a valuable package based on Django Web Framework & Django Rest Framework for high-level and rapid web development. The introduced package generates Django applications. After completing many projects, we concluded that any basic project and essential part is its database structure. You can give the database schema in this package and get some parts of the Django application, such as API, models, admin, signals, model cache, setting configuration, mixins, etc. All of these capabilities come with a unit test. So you no longer have to worry about the simple parts of Django, and now you can write your advanced services in Django. Django-sage-painless dramatically speeds up the initial development of the project in Django. However, we intend to make it possible to use it in projects that are in progress. But the reality now is that we have made Django a quick start. We used the name painless instead of the Django code generator because this package allows you to reach your goals with less effort.

Why should we use this package?

One of the most important reasons to use this package is to speed up the development of Django applications. Then, another important reason is that you can use many features with this package if you want. Therefore, you DO NOT have to use all the features of the generator.

What are the main features of the package?

	Generate models based on your defined diagram

	Support database relationships: [one-to-one] [one-to-many] [many-to-many]

	Generate cache mixin to your models (OPTIONAL)

	Generate model test

	Generate signals (if you use one-to-one relationship)

	Generate rest framework API endpoints (OPTIONAL)

	Generate rest framework documentation (OPTIONAL)

	Generate API URLs (if request for API)

	Generate API test

	Generate admin via filter and search capability (OPTIONAL)

	Generate setting configuration of (Redis, RabbitMQ, Celery, etc. OPTIONAL)

	Generate docker compose file, Dockerfile and related documentation (OPTIONAL)

Why don’t we produce the whole Django project?

Based on this question, we took a new attitude was taken in the package. One of the important issues in package design is that it is scalable and compatible with projects that are under development. That’s why we decided to automate only the apps according to the project design model instead of producing a complete Django project. Therefore, anyone can use this package in the middle of their startup development and release their new features faster than before.

How to learn to create a diagram?

In the example section, we have taught all the sections related to Digram.

How does the cache algorithm work?

Caching algorithm works in such a way that once your data is loaded, it is cached in Redis, and there is no need to query the database again. We have also designed the algorithm like that if your data in the database changes, cached data will be deleted automatically from Redis.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to django-sage-painless’s documentation!

 		
 Quick Start

 		
 Getting Started

 		
 Start Project

 		
 Install Generator

 		
 Usage

 		
 Diagram

 		
 Template

 		
 Examples

 		
 Contribute

 		
 Project Detail

 		
 Git Rules

 		
 Development

 		
 FAQ

 		
 What is code generator?

 		
 What is django-sage-painless?

 		
 Why should we use this package?

 		
 What are the main features of the package?

 		
 Why don’t we produce the whole Django project?

 		
 How to learn to create a diagram?

 		
 How does the cache algorithm work?

_images/tag_sage.png
SAGE W

_static/minus.png

_static/plus.png

_static/file.png

